material

Ca(ZnP)2

ID:

mp-9569

DOI:

10.17188/1313339


Tags: Calcium dizinc phosphide

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.701 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.98 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
0.875 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P3m1 [164]
Hall
-P 3 2"
Point Group
3m
Crystal System
trigonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
CdS (mp-672) <1 0 0> <1 1 0> 0.000 144.0
InP (mp-20351) <1 1 1> <0 0 1> 0.000 184.5
Ag (mp-124) <1 1 1> <0 0 1> 0.000 269.6
CdS (mp-672) <0 0 1> <0 0 1> 0.006 184.5
SiC (mp-8062) <1 1 1> <0 0 1> 0.006 99.3
LaAlO3 (mp-2920) <1 0 1> <0 0 1> 0.007 227.0
PbSe (mp-2201) <1 1 1> <0 0 1> 0.007 269.6
Ge(Bi3O5)4 (mp-23352) <1 1 1> <0 0 1> 0.010 184.5
BN (mp-984) <0 0 1> <0 0 1> 0.013 170.3
CdTe (mp-406) <1 1 1> <0 0 1> 0.018 227.0
GaSb (mp-1156) <1 1 1> <0 0 1> 0.021 269.6
ZnSe (mp-1190) <1 1 1> <0 0 1> 0.021 56.8
YAlO3 (mp-3792) <1 1 1> <1 0 0> 0.024 249.4
InSb (mp-20012) <1 1 1> <0 0 1> 0.027 227.0
CdWO4 (mp-19387) <1 1 1> <1 0 1> 0.033 155.6
CdSe (mp-2691) <1 1 1> <0 0 1> 0.037 269.6
C (mp-48) <0 0 1> <0 0 1> 0.039 99.3
BN (mp-984) <1 0 0> <1 0 1> 0.040 155.6
GaAs (mp-2534) <1 1 1> <0 0 1> 0.044 56.8
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> 0.059 184.5
Ge (mp-32) <1 0 0> <1 0 0> 0.062 166.2
YVO4 (mp-19133) <1 1 1> <1 0 1> 0.062 249.0
CdS (mp-672) <1 0 1> <1 0 0> 0.069 193.9
GaAs (mp-2534) <1 0 0> <1 0 0> 0.070 166.2
LiF (mp-1138) <1 0 0> <1 0 0> 0.073 83.1
NaCl (mp-22862) <1 1 1> <0 0 1> 0.073 56.8
CdWO4 (mp-19387) <0 1 0> <1 1 0> 0.075 239.9
GdScO3 (mp-5690) <0 1 0> <1 0 0> 0.084 221.7
ZnSe (mp-1190) <1 0 0> <1 0 0> 0.084 166.2
Fe3O4 (mp-19306) <1 1 1> <0 0 1> 0.086 127.7
AlN (mp-661) <1 0 0> <0 0 1> 0.087 141.9
MgF2 (mp-1249) <1 1 0> <0 0 1> 0.097 326.4
TePb (mp-19717) <1 1 1> <0 0 1> 0.098 227.0
YVO4 (mp-19133) <1 0 0> <0 0 1> 0.098 184.5
SiC (mp-7631) <1 1 1> <1 0 1> 0.099 249.0
Ge (mp-32) <1 1 1> <0 0 1> 0.100 56.8
TiO2 (mp-390) <1 1 1> <0 0 1> 0.100 326.4
TiO2 (mp-2657) <1 1 0> <0 0 1> 0.105 354.8
LaF3 (mp-905) <0 0 1> <0 0 1> 0.108 184.5
BaTiO3 (mp-5986) <1 1 1> <1 1 0> 0.108 144.0
BaF2 (mp-1029) <1 1 1> <0 0 1> 0.115 269.6
SrTiO3 (mp-4651) <1 1 1> <1 0 1> 0.121 280.2
LiGaO2 (mp-5854) <0 1 1> <1 0 1> 0.121 342.4
YAlO3 (mp-3792) <1 0 1> <1 0 0> 0.122 193.9
SiC (mp-11714) <1 1 1> <0 0 1> 0.123 326.4
MgF2 (mp-1249) <1 0 0> <1 0 1> 0.124 217.9
C (mp-66) <1 1 1> <0 0 1> 0.124 269.6
TbScO3 (mp-31119) <0 1 0> <1 0 0> 0.126 221.7
SrTiO3 (mp-4651) <1 1 0> <1 1 1> 0.126 250.2
PbS (mp-21276) <1 1 1> <0 0 1> 0.126 184.5
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
146 37 31 -4 -0 0
37 146 31 4 0 0
31 31 116 0 0 0
-4 4 0 37 0 0
-0 0 0 0 37 -4
0 0 0 0 -4 55
Compliance Tensor Sij (10-12Pa-1)
7.6 -1.6 -1.6 1.1 0 0
-1.6 7.6 -1.6 -1.1 0 0
-1.6 -1.6 9.4 0 0 0
1.1 -1.1 0 27 0 0
0 0 0 0 27 2.2
0 0 0 0 2.2 18.4
Shear Modulus GV
47 GPa
Bulk Modulus KV
67 GPa
Shear Modulus GR
45 GPa
Bulk Modulus KR
66 GPa
Shear Modulus GVRH
46 GPa
Bulk Modulus KVRH
67 GPa
Elastic Anisotropy
0.22
Poisson's Ratio
0.22

Dielectric Properties

Reference for tensor and properties: Methodology
Dielectric Tensor εij (electronic contribution)
11.34 0.00 0.00
0.00 11.34 0.00
0.00 0.00 10.67
Dielectric Tensor εij (total)
18.37 -0.00 -0.00
-0.00 18.37 0.00
-0.00 0.00 23.94
Polycrystalline dielectric constant εpoly
(electronic contribution)
11.12
Polycrystalline dielectric constant εpoly
(total)
20.23
Refractive Index n
3.33
Potentially ferroelectric?
True

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
35
U Values
--
Pseudopotentials
VASP PAW: P Ca_sv Zn
Final Energy/Atom
-3.7713 eV
Corrected Energy
-18.8564 eV
-18.8564 eV = -18.8564 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
1.14 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
1.14 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
1.61 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
1.61 eV
derivative discontinuity
functional
GLLB-SC
0.47 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 100062

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)