material

Rb3BAs2

ID:

mp-9718

DOI:

10.17188/1313633


Tags: Trirubidium diarsenidoborate

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Unknown
Formation Energy / Atom
-0.336 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.000 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.21 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Stable
Band Gap
1.295 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
C2/c [15]
Hall
-C 2yc
Point Group
2/m
Crystal System
monoclinic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

Vibrational Properties

Reference for phonon calculations and visualization: Visualize with phononwebsite

Phonon dispersion

Density of States
Warning! These calculations were performed using a PBEsol exchange correlation functional in the framework of DFPT using the Abinit code. Please see the wiki for more info.

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
NdGaO3 (mp-3196) <1 0 1> <1 0 -1> 0.006 107.2
AlN (mp-661) <1 1 0> <0 1 0> 0.006 270.6
YVO4 (mp-19133) <1 0 1> <1 0 0> 0.007 277.4
LiF (mp-1138) <1 1 1> <0 0 1> 0.011 286.6
GaN (mp-804) <0 0 1> <1 0 -1> 0.011 107.2
GaSe (mp-1943) <0 0 1> <0 0 1> 0.016 191.1
C (mp-48) <1 0 1> <1 1 1> 0.018 178.9
SrTiO3 (mp-4651) <1 0 1> <1 0 -1> 0.019 107.2
ZrO2 (mp-2858) <1 1 1> <1 1 0> 0.029 258.4
TbScO3 (mp-31119) <1 0 1> <1 0 0> 0.033 277.4
ZnO (mp-2133) <1 0 0> <0 1 1> 0.036 262.8
TiO2 (mp-2657) <1 1 1> <0 1 1> 0.041 262.8
SiC (mp-11714) <1 1 0> <0 1 0> 0.041 270.6
C (mp-66) <1 1 0> <0 0 1> 0.041 286.6
LiF (mp-1138) <1 1 0> <0 1 1> 0.055 262.8
AlN (mp-661) <1 1 1> <1 1 0> 0.057 258.4
TiO2 (mp-390) <1 1 0> <1 0 1> 0.063 154.5
GdScO3 (mp-5690) <1 0 1> <1 0 0> 0.071 277.4
TiO2 (mp-390) <1 0 0> <1 0 0> 0.078 185.0
MgF2 (mp-1249) <1 0 1> <1 0 -1> 0.080 107.2
GdScO3 (mp-5690) <0 1 1> <0 1 0> 0.083 270.6
GdScO3 (mp-5690) <0 1 0> <0 1 0> 0.086 90.2
AlN (mp-661) <1 0 0> <0 0 1> 0.086 95.5
Te2Mo (mp-602) <0 0 1> <1 0 1> 0.087 154.5
BaTiO3 (mp-5986) <1 1 1> <0 0 1> 0.089 286.6
TbScO3 (mp-31119) <0 1 0> <1 1 1> 0.099 178.9
Mg (mp-153) <0 0 1> <1 1 -1> 0.099 140.1
InSb (mp-20012) <1 1 1> <1 0 1> 0.101 154.5
CdTe (mp-406) <1 1 1> <1 0 1> 0.105 154.5
AlN (mp-661) <1 0 1> <1 0 -1> 0.107 107.2
SiO2 (mp-6930) <1 0 0> <0 1 0> 0.108 270.6
SiO2 (mp-6930) <1 0 1> <0 0 1> 0.114 286.6
NdGaO3 (mp-3196) <0 1 1> <1 0 -1> 0.115 107.2
InSb (mp-20012) <1 1 0> <0 0 1> 0.118 191.1
MgF2 (mp-1249) <1 0 0> <0 0 1> 0.119 286.6
CdWO4 (mp-19387) <0 1 1> <0 0 1> 0.122 286.6
PbS (mp-21276) <1 0 0> <1 0 0> 0.129 185.0
KTaO3 (mp-3614) <1 1 1> <1 0 0> 0.133 277.4
SiC (mp-8062) <1 0 0> <0 0 1> 0.136 95.5
YVO4 (mp-19133) <1 1 0> <0 0 1> 0.153 191.1
Al (mp-134) <1 1 1> <1 0 0> 0.161 277.4
TbScO3 (mp-31119) <0 1 1> <1 0 -1> 0.191 107.2
DyScO3 (mp-31120) <0 1 1> <1 0 -1> 0.192 107.2
InAs (mp-20305) <1 0 0> <1 0 0> 0.201 185.0
ZnTe (mp-2176) <1 0 0> <1 0 0> 0.214 185.0
Ni (mp-23) <1 1 0> <1 0 0> 0.240 277.4
TiO2 (mp-2657) <1 0 0> <1 0 0> 0.256 277.4
CdTe (mp-406) <1 1 0> <1 0 0> 0.257 185.0
DyScO3 (mp-31120) <1 0 1> <1 0 -1> 0.311 107.2
Bi2Se3 (mp-541837) <0 0 1> <1 1 0> 0.347 258.4
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
18 10 14 0 -1 0
10 23 8 0 2 0
14 8 26 0 -2 0
0 0 0 6 0 3
-1 2 -2 0 12 0
0 0 0 3 0 7
Compliance Tensor Sij (10-12Pa-1)
124.3 -34.9 -58.5 0 0.8 0
-34.9 61.6 -1.6 0 -11.8 0
-58.5 -1.6 73.5 0 11.8 0
0 0 0 198.9 0 -81.9
0.8 -11.8 11.8 0 89.1 0
0 0 0 -81.9 0 185.4
Shear Modulus GV
7 GPa
Bulk Modulus KV
15 GPa
Shear Modulus GR
5 GPa
Bulk Modulus KR
14 GPa
Shear Modulus GVRH
6 GPa
Bulk Modulus KVRH
15 GPa
Elastic Anisotropy
1.74
Poisson's Ratio
0.31

Similar Structures

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
CsHIF7 (mp-699173) 0.5988 0.000 4
CsI3 (mp-22876) 0.7485 0.000 2
CsBr3 (mp-27641) 0.5855 0.000 2
K3BAs2 (mp-9665) 0.2637 0.005 3
Cs3BAs2 (mp-573658) 0.2789 0.000 3
Cs3BP2 (mp-9675) 0.2955 0.000 3
K3BP2 (mp-9664) 0.2051 0.000 3
Rb3BP2 (mp-9720) 0.1339 0.000 3
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
42
U Values
--
Pseudopotentials
VASP PAW: B As Rb_sv
Final Energy/Atom
-3.4844 eV
Corrected Energy
-41.8126 eV
-41.8126 eV = -41.8126 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations

User Data

dtu

Authors:
name conditions value ref
band gap
type
indirect
method
Kohn-Sham
functional
GLLB-SC
2.31 eV
band gap
type
direct
method
Kohn-Sham
functional
GLLB-SC
2.40 eV
band gap
type
indirect
method
quasiparticle
functional
GLLB-SC
3.48 eV
band gap
type
direct
method
quasiparticle
functional
GLLB-SC
3.57 eV
derivative discontinuity
functional
GLLB-SC
1.17 eV

Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 402082

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)