Final Magnetic Moment1.379 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingFM |
Formation Energy / Atom0.515 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.515 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density6.48 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToNi + Na |
Band Gap0.000 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinI4/mmm [139] |
Hall-I 4 2 |
Point Group4/mmm |
Crystal Systemtetragonal |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <1 1 1> | 123.2 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 41.8 |
AlN (mp-661) | <1 0 0> | <0 0 1> | 153.4 |
AlN (mp-661) | <1 0 1> | <1 0 0> | 191.2 |
AlN (mp-661) | <1 1 0> | <1 1 0> | 77.2 |
AlN (mp-661) | <1 1 1> | <1 1 0> | 270.3 |
GaAs (mp-2534) | <1 0 0> | <0 0 1> | 69.7 |
GaAs (mp-2534) | <1 1 0> | <1 0 1> | 92.0 |
GaN (mp-804) | <1 1 0> | <1 1 0> | 115.9 |
SiO2 (mp-6930) | <1 1 1> | <1 1 0> | 154.5 |
KCl (mp-23193) | <1 1 0> | <0 0 1> | 292.8 |
DyScO3 (mp-31120) | <0 0 1> | <0 0 1> | 125.5 |
DyScO3 (mp-31120) | <1 0 0> | <1 0 1> | 92.0 |
InAs (mp-20305) | <1 0 0> | <0 0 1> | 181.3 |
InAs (mp-20305) | <1 1 0> | <1 1 1> | 164.2 |
InAs (mp-20305) | <1 1 1> | <1 0 0> | 327.7 |
ZnSe (mp-1190) | <1 0 0> | <0 0 1> | 69.7 |
KTaO3 (mp-3614) | <1 0 0> | <0 0 1> | 125.5 |
KTaO3 (mp-3614) | <1 1 0> | <1 0 1> | 92.0 |
KTaO3 (mp-3614) | <1 1 1> | <1 0 1> | 337.3 |
CdS (mp-672) | <0 0 1> | <1 0 0> | 109.2 |
CdS (mp-672) | <1 1 0> | <1 1 0> | 154.5 |
CdS (mp-672) | <1 1 1> | <1 0 0> | 54.6 |
Te2W (mp-22693) | <0 0 1> | <1 0 0> | 245.8 |
Te2W (mp-22693) | <0 1 0> | <1 1 1> | 164.2 |
Te2W (mp-22693) | <1 1 0> | <1 1 0> | 115.9 |
YVO4 (mp-19133) | <0 0 1> | <1 1 0> | 154.5 |
CeO2 (mp-20194) | <1 0 0> | <0 0 1> | 125.5 |
CeO2 (mp-20194) | <1 1 0> | <1 0 1> | 337.3 |
GaAs (mp-2534) | <1 1 1> | <1 1 1> | 287.4 |
BaF2 (mp-1029) | <1 0 0> | <1 0 1> | 276.0 |
BaF2 (mp-1029) | <1 1 0> | <0 0 1> | 292.8 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 167.3 |
GaN (mp-804) | <1 0 0> | <0 0 1> | 83.7 |
GaN (mp-804) | <1 0 1> | <0 0 1> | 209.2 |
GaN (mp-804) | <1 1 1> | <0 0 1> | 125.5 |
SiO2 (mp-6930) | <0 0 1> | <1 0 0> | 355.0 |
SiO2 (mp-6930) | <1 0 0> | <1 0 1> | 245.3 |
SiO2 (mp-6930) | <1 0 1> | <1 1 0> | 309.0 |
SiO2 (mp-6930) | <1 1 0> | <0 0 1> | 334.7 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 1> | 92.0 |
DyScO3 (mp-31120) | <0 1 1> | <1 0 1> | 337.3 |
DyScO3 (mp-31120) | <1 0 1> | <1 0 1> | 276.0 |
DyScO3 (mp-31120) | <1 1 0> | <1 1 1> | 123.2 |
ZnSe (mp-1190) | <1 1 0> | <1 0 1> | 92.0 |
ZnSe (mp-1190) | <1 1 1> | <1 1 1> | 287.4 |
CdS (mp-672) | <1 0 0> | <1 1 1> | 205.3 |
CdS (mp-672) | <1 0 1> | <1 1 1> | 287.4 |
LiF (mp-1138) | <1 0 0> | <0 0 1> | 69.7 |
LiF (mp-1138) | <1 1 0> | <1 1 1> | 287.4 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
136 | 97 | 93 | 0 | 0 | 0 |
97 | 136 | 93 | 0 | 0 | 0 |
93 | 93 | 125 | 0 | 0 | 0 |
0 | 0 | 0 | 56 | 0 | 0 |
0 | 0 | 0 | 0 | 56 | 0 |
0 | 0 | 0 | 0 | 0 | 62 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
18 | -7.4 | -7.8 | 0 | 0 | 0 |
-7.4 | 18 | -7.8 | 0 | 0 | 0 |
-7.8 | -7.8 | 19.6 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 16.2 |
Shear Modulus GV42 GPa |
Bulk Modulus KV107 GPa |
Shear Modulus GR32 GPa |
Bulk Modulus KR106 GPa |
Shear Modulus GVRH37 GPa |
Bulk Modulus KVRH107 GPa |
Elastic Anisotropy1.63 |
Poisson's Ratio0.34 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
ZnCu2Ni (mp-30593) | 0.0970 | 0.005 | 3 |
CrCoPt2 (mp-570863) | 0.0223 | 0.000 | 3 |
LiCa6Ge (mp-12609) | 0.0714 | 0.180 | 3 |
GaFeNi2 (mp-1065359) | 0.0303 | 0.066 | 3 |
GaCo2Ni (mp-1018060) | 0.0560 | 0.075 | 3 |
Cr8Ni50Mo15W2 (mp-767372) | 0.1802 | 0.028 | 4 |
CrFeCoNi (mp-1012640) | 0.3226 | 0.118 | 4 |
CrFeCoNi (mp-1096923) | 0.3689 | 0.193 | 4 |
Lu3Th (mp-973339) | 0.0000 | 0.039 | 2 |
Yb3Ta (mp-979953) | 0.0031 | 0.657 | 2 |
ZnPd3 (mp-865425) | 0.0081 | 0.010 | 2 |
FePt (mp-2260) | 0.0016 | 0.000 | 2 |
LuAu4 (mp-1068773) | 0.0091 | 0.000 | 2 |
Pr (mp-97) | 0.0518 | 0.008 | 1 |
Sm (mp-21377) | 0.0411 | 0.010 | 1 |
Hg (mp-753304) | 0.0660 | 0.012 | 1 |
Dy (mp-10750) | 0.0678 | 0.021 | 1 |
Rb (mp-12628) | 0.0476 | 0.015 | 1 |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Na_pv Ni_pv |
Final Energy/Atom-4.1481 eV |
Corrected Energy-16.5924 eV
-16.5924 eV = -16.5924 eV (uncorrected energy)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)