material

Ti3Nb

ID:

mp-980945

DOI:

10.17188/1316301


Material Details

Final Magnetic Moment
-0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
0.093 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.093 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
5.56 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Ti + Nb
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Pm3m [221]
Hall
-P 4 2 3
Point Group
m3m
Crystal System
cubic

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
InP (mp-20351) <1 1 1> <1 0 0> -0.048 307.5
ZnSe (mp-1190) <1 1 1> <1 0 0> -0.040 170.9
AlN (mp-661) <1 0 0> <1 0 0> -0.031 205.0
GaAs (mp-2534) <1 1 1> <1 0 0> -0.022 170.9
BN (mp-984) <1 0 0> <1 0 0> -0.006 290.4
Ga2O3 (mp-886) <1 0 -1> <1 0 0> -0.001 153.8
CeO2 (mp-20194) <1 1 1> <1 1 1> 0.000 207.1
Si (mp-149) <1 1 1> <1 1 1> 0.000 207.1
LiAlO2 (mp-3427) <0 0 1> <1 0 0> 0.000 136.7
SiC (mp-8062) <1 0 0> <1 0 0> 0.003 153.8
SiC (mp-8062) <1 1 0> <1 1 0> 0.003 217.5
SiC (mp-11714) <1 1 0> <1 1 0> 0.004 217.5
Ga2O3 (mp-886) <1 0 0> <1 1 0> 0.005 72.5
C (mp-66) <1 1 0> <1 1 0> 0.006 72.5
C (mp-66) <1 1 1> <1 1 1> 0.006 88.8
Mg (mp-153) <1 1 1> <1 0 0> 0.010 273.4
GaN (mp-804) <1 1 1> <1 0 0> 0.011 273.4
CdSe (mp-2691) <1 0 0> <1 0 0> 0.011 153.8
CsI (mp-614603) <1 0 0> <1 0 0> 0.012 307.5
CaCO3 (mp-3953) <0 0 1> <1 1 1> 0.012 88.8
CdSe (mp-2691) <1 1 0> <1 1 0> 0.013 217.5
ZnTe (mp-2176) <1 0 0> <1 0 0> 0.016 153.8
GaSe (mp-1943) <0 0 1> <1 1 1> 0.018 88.8
ZnTe (mp-2176) <1 1 0> <1 1 0> 0.018 217.5
GdScO3 (mp-5690) <1 0 1> <1 1 0> 0.020 169.1
InAs (mp-20305) <1 0 0> <1 0 0> 0.024 153.8
CdWO4 (mp-19387) <1 1 0> <1 0 0> 0.024 205.0
Te2W (mp-22693) <0 1 1> <1 1 0> 0.025 289.9
GaSb (mp-1156) <1 0 0> <1 0 0> 0.025 153.8
InAs (mp-20305) <1 1 0> <1 1 0> 0.027 217.5
GaSb (mp-1156) <1 1 0> <1 1 0> 0.028 217.5
Ge (mp-32) <1 1 1> <1 0 0> 0.028 170.9
AlN (mp-661) <0 0 1> <1 1 0> 0.034 169.1
SrTiO3 (mp-4651) <1 0 0> <1 1 0> 0.035 265.8
GaTe (mp-542812) <1 0 -1> <1 0 0> 0.037 153.8
SrTiO3 (mp-4651) <0 0 1> <1 0 0> 0.043 153.8
C (mp-48) <0 0 1> <1 1 1> 0.043 207.1
MoSe2 (mp-1634) <1 1 0> <1 1 0> 0.047 265.8
PbSe (mp-2201) <1 0 0> <1 0 0> 0.050 153.8
YAlO3 (mp-3792) <1 1 0> <1 0 0> 0.050 222.1
C (mp-48) <1 1 1> <1 1 0> 0.054 169.1
TeO2 (mp-2125) <0 0 1> <1 1 0> 0.054 96.6
ZrO2 (mp-2858) <0 0 1> <1 0 0> 0.055 136.7
PbSe (mp-2201) <1 1 0> <1 1 0> 0.056 217.5
Bi2Se3 (mp-541837) <1 0 1> <1 0 0> 0.058 256.3
TePb (mp-19717) <1 0 0> <1 0 0> 0.059 85.4
CdS (mp-672) <1 0 0> <1 0 0> 0.064 85.4
TiO2 (mp-390) <1 0 0> <1 0 0> 0.072 256.3
NdGaO3 (mp-3196) <0 0 1> <1 0 0> 0.072 273.4
BaF2 (mp-1029) <1 1 1> <1 1 1> 0.074 207.1
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
115 127 127 0 -0 -0
127 115 127 0 0 -0
127 127 115 -0 0 0
0 0 -0 56 0 0
-0 0 0 0 56 0
-0 -0 0 0 0 56
Compliance Tensor Sij (10-12Pa-1)
-55.3 29 29 0 0 0
29 -55.3 29 0 0 0
29 29 -55.3 0 0 0
0 0 0 17.7 0 0
0 0 0 0 17.7 0
0 0 0 0 0 17.7
Shear Modulus GV
31 GPa
Bulk Modulus KV
123 GPa
Shear Modulus GR
-18 GPa
Bulk Modulus KR
123 GPa
Shear Modulus GVRH
7 GPa
Bulk Modulus KVRH
123 GPa
Elastic Anisotropy
-13.93
Poisson's Ratio
0.47

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
10
U Values
--
Pseudopotentials
VASP PAW: Ti_pv Nb_pv
Final Energy/Atom
-8.3600 eV
Corrected Energy
-33.4399 eV
-33.4399 eV = -33.4399 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)