material

Zn3N

ID:

mp-981366

DOI:

10.17188/1316333


Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
Non-magnetic
Formation Energy / Atom
0.664 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.684 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
6.84 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
Zn + Zn3N2
Band Gap
0.000 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
I4/mmm [139]
Hall
-I 4 2
Point Group
4/mmm
Crystal System
tetragonal

Band Structure

Density of States
Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

sign indicates spin ↑ ↓

  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
CdS (mp-672) <1 0 0> <0 0 1> -5.707 86.9
LaF3 (mp-905) <0 0 1> <0 0 1> -5.315 223.6
Bi2Se3 (mp-541837) <0 0 1> <0 0 1> -5.301 74.5
Ga2O3 (mp-886) <1 0 0> <0 0 1> -3.761 273.2
CdS (mp-672) <1 1 0> <1 0 1> -3.537 252.2
AlN (mp-661) <1 1 1> <0 0 1> -3.324 111.8
YAlO3 (mp-3792) <0 0 1> <0 0 1> -3.277 111.8
TiO2 (mp-390) <1 0 1> <0 0 1> -3.049 198.7
ZnO (mp-2133) <1 1 0> <0 0 1> -2.765 211.1
ZrO2 (mp-2858) <1 0 0> <0 0 1> -2.739 111.8
LaAlO3 (mp-2920) <1 0 0> <1 0 1> -2.523 283.7
ZnO (mp-2133) <1 0 0> <1 0 1> -2.416 157.6
Al2O3 (mp-1143) <0 0 1> <1 0 0> -2.311 202.8
BaF2 (mp-1029) <1 1 1> <1 0 1> -2.305 283.7
MgF2 (mp-1249) <1 1 1> <0 0 1> -2.251 335.3
Fe2O3 (mp-24972) <0 0 1> <1 0 1> -2.158 94.6
GaN (mp-804) <1 0 1> <0 0 1> -2.103 173.9
TiO2 (mp-2657) <1 1 0> <1 0 0> -2.075 57.9
KTaO3 (mp-3614) <1 1 0> <1 0 0> -2.046 144.9
TeO2 (mp-2125) <1 0 1> <0 0 1> -2.026 236.0
TeO2 (mp-2125) <0 1 1> <0 0 1> -1.988 310.5
Si (mp-149) <1 1 1> <0 0 1> -1.858 310.5
CeO2 (mp-20194) <1 1 1> <0 0 1> -1.857 310.5
Te2Mo (mp-602) <1 0 1> <0 0 1> -1.829 111.8
GaP (mp-2490) <1 1 1> <0 0 1> -1.822 310.5
Al (mp-134) <1 1 0> <1 0 0> -1.814 144.9
LaF3 (mp-905) <1 0 1> <1 0 1> -1.810 283.7
DyScO3 (mp-31120) <0 0 1> <0 0 1> -1.791 273.2
CaF2 (mp-2741) <1 1 1> <0 0 1> -1.790 310.5
SiO2 (mp-6930) <0 0 1> <1 0 1> -1.698 220.7
KCl (mp-23193) <1 0 0> <1 0 1> -1.684 157.6
NdGaO3 (mp-3196) <0 1 1> <1 0 0> -1.683 202.8
LiGaO2 (mp-5854) <1 0 0> <0 0 1> -1.662 310.5
TeO2 (mp-2125) <0 0 1> <1 0 0> -1.612 289.7
GaTe (mp-542812) <1 0 0> <1 0 0> -1.606 86.9
ZrO2 (mp-2858) <1 0 -1> <1 0 1> -1.483 189.1
YVO4 (mp-19133) <1 0 0> <0 0 1> -1.409 223.6
CdS (mp-672) <1 0 1> <1 0 0> -1.377 202.8
BaF2 (mp-1029) <1 1 0> <1 0 1> -1.370 220.7
ZrO2 (mp-2858) <1 1 -1> <0 0 1> -1.361 236.0
NdGaO3 (mp-3196) <1 0 1> <1 0 1> -1.343 283.7
ZnSe (mp-1190) <1 1 0> <1 0 0> -1.260 144.9
InP (mp-20351) <1 0 0> <1 0 0> -1.154 202.8
GaAs (mp-2534) <1 1 0> <1 0 0> -1.132 144.9
TbScO3 (mp-31119) <0 0 1> <1 0 0> -1.076 289.7
TeO2 (mp-2125) <1 0 0> <1 0 1> -1.033 283.7
LaF3 (mp-905) <1 0 0> <0 0 1> -1.021 211.1
Ge (mp-32) <1 1 0> <1 0 0> -0.938 144.9
LiTaO3 (mp-3666) <0 0 1> <1 0 1> -0.900 94.6
Te2W (mp-22693) <0 1 0> <0 0 1> -0.874 111.8
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
-797 982 106 0 -0 0
982 -797 106 -0 0 0
106 106 109 -0 0 0
0 -0 -0 -27 0 0
-0 0 0 0 -27 0
0 0 0 0 0 9
Compliance Tensor Sij (10-12Pa-1)
-24.2 -23.6 46.4 0 0 0
-23.6 -24.2 46.4 0 0 0
46.4 46.4 -81 0 0 0
0 0 0 -36.7 0 0
0 0 0 0 -36.7 0
0 0 0 0 0 109
Shear Modulus GV
-188 GPa
Bulk Modulus KV
100 GPa
Shear Modulus GR
-22 GPa
Bulk Modulus KR
110 GPa
Shear Modulus GVRH
-105 GPa
Bulk Modulus KVRH
105 GPa
Elastic Anisotropy
37.92
Poisson's Ratio
1.25

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
28
U Values
--
Pseudopotentials
VASP PAW: Zn N
Final Energy/Atom
-2.2786 eV
Corrected Energy
-9.1143 eV
-9.1143 eV = -9.1143 eV (uncorrected energy)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)