Final Magnetic Moment0.002 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom0.099 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.384 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density16.50 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToOs + ScOs2 |
Band Gap0.000 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinPm3m [221] |
Hall-P 4 2 3 |
Point Groupm3m |
Crystal Systemcubic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <1 0 0> | 281.9 |
LaAlO3 (mp-2920) | <1 1 0> | <1 1 0> | 243.6 |
AlN (mp-661) | <1 0 0> | <1 1 0> | 287.9 |
CeO2 (mp-20194) | <1 1 0> | <1 1 0> | 44.3 |
GaAs (mp-2534) | <1 1 0> | <1 1 0> | 44.3 |
GaAs (mp-2534) | <1 1 1> | <1 0 0> | 281.9 |
AlN (mp-661) | <0 0 1> | <1 1 1> | 108.5 |
AlN (mp-661) | <1 0 1> | <1 0 0> | 187.9 |
AlN (mp-661) | <1 1 0> | <1 1 0> | 310.1 |
AlN (mp-661) | <1 1 1> | <1 0 0> | 234.9 |
BaF2 (mp-1029) | <1 0 0> | <1 0 0> | 78.3 |
GaN (mp-804) | <0 0 1> | <1 1 1> | 27.1 |
GaN (mp-804) | <1 0 0> | <1 1 0> | 155.0 |
CeO2 (mp-20194) | <1 0 0> | <1 0 0> | 31.3 |
CeO2 (mp-20194) | <1 1 1> | <1 0 0> | 156.6 |
GaAs (mp-2534) | <1 0 0> | <1 0 0> | 31.3 |
BaF2 (mp-1029) | <1 1 0> | <1 1 0> | 177.2 |
GaN (mp-804) | <1 0 1> | <1 0 0> | 360.2 |
GaN (mp-804) | <1 1 0> | <1 1 0> | 88.6 |
GaN (mp-804) | <1 1 1> | <1 1 1> | 217.0 |
SiO2 (mp-6930) | <1 0 0> | <1 1 0> | 110.7 |
SiO2 (mp-6930) | <1 0 1> | <1 0 0> | 250.6 |
KCl (mp-23193) | <1 1 0> | <1 1 0> | 177.2 |
SiO2 (mp-6930) | <0 0 1> | <1 1 1> | 189.9 |
DyScO3 (mp-31120) | <0 0 1> | <1 0 0> | 31.3 |
DyScO3 (mp-31120) | <0 1 0> | <1 1 0> | 44.3 |
DyScO3 (mp-31120) | <1 1 1> | <1 0 0> | 297.5 |
InAs (mp-20305) | <1 1 1> | <1 1 1> | 189.9 |
SiO2 (mp-6930) | <1 1 0> | <1 1 0> | 199.3 |
KCl (mp-23193) | <1 0 0> | <1 0 0> | 78.3 |
KTaO3 (mp-3614) | <1 0 0> | <1 0 0> | 15.7 |
KTaO3 (mp-3614) | <1 1 1> | <1 1 1> | 27.1 |
DyScO3 (mp-31120) | <0 1 1> | <1 1 1> | 54.2 |
DyScO3 (mp-31120) | <1 0 0> | <1 1 0> | 44.3 |
DyScO3 (mp-31120) | <1 0 1> | <1 1 1> | 54.2 |
DyScO3 (mp-31120) | <1 1 0> | <1 0 0> | 62.6 |
InAs (mp-20305) | <1 0 0> | <1 0 0> | 78.3 |
CdS (mp-672) | <1 0 0> | <1 1 0> | 199.3 |
CdS (mp-672) | <1 1 0> | <1 1 0> | 199.3 |
CdS (mp-672) | <1 1 1> | <1 0 0> | 203.6 |
ZnSe (mp-1190) | <1 0 0> | <1 0 0> | 31.3 |
ZnSe (mp-1190) | <1 1 0> | <1 1 0> | 44.3 |
ZnSe (mp-1190) | <1 1 1> | <1 0 0> | 281.9 |
KTaO3 (mp-3614) | <1 1 0> | <1 1 0> | 22.1 |
LiF (mp-1138) | <1 0 0> | <1 0 0> | 140.9 |
LiF (mp-1138) | <1 1 0> | <1 1 0> | 199.3 |
CdS (mp-672) | <0 0 1> | <1 1 1> | 108.5 |
CdS (mp-672) | <1 0 1> | <1 1 0> | 221.5 |
Te2W (mp-22693) | <0 0 1> | <1 0 0> | 297.5 |
Te2W (mp-22693) | <0 1 0> | <1 1 0> | 265.8 |
Stiffness Tensor Cij (GPa) |
|||||
---|---|---|---|---|---|
343 | 214 | 214 | 0 | 0 | 0 |
214 | 343 | 214 | 0 | 0 | 0 |
214 | 214 | 343 | 0 | 0 | 0 |
0 | 0 | 0 | 85 | 0 | 0 |
0 | 0 | 0 | 0 | 85 | 0 |
0 | 0 | 0 | 0 | 0 | 85 |
Compliance Tensor Sij (10-12Pa-1) |
|||||
---|---|---|---|---|---|
5.6 | -2.1 | -2.1 | 0 | 0 | 0 |
-2.1 | 5.6 | -2.1 | 0 | 0 | 0 |
-2.1 | -2.1 | 5.6 | 0 | 0 | 0 |
0 | 0 | 0 | 11.8 | 0 | 0 |
0 | 0 | 0 | 0 | 11.8 | 0 |
0 | 0 | 0 | 0 | 0 | 11.8 |
Shear Modulus GV77 GPa |
Bulk Modulus KV257 GPa |
Shear Modulus GR75 GPa |
Bulk Modulus KR257 GPa |
Shear Modulus GVRH76 GPa |
Bulk Modulus KVRH257 GPa |
Elastic Anisotropy0.09 |
Poisson's Ratio0.37 |
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
ZnCu2Ni (mp-30593) | 0.1125 | 0.005 | 3 |
CrCoPt2 (mp-570863) | 0.0492 | 0.000 | 3 |
LiCa6Ge (mp-12609) | 0.0000 | 0.180 | 3 |
GaFeNi2 (mp-1065359) | 0.0412 | 0.066 | 3 |
GaCo2Ni (mp-1018060) | 0.0157 | 0.075 | 3 |
Cr8Ni50Mo15W2 (mp-767372) | 0.2155 | 0.028 | 4 |
CrFeCoNi (mp-1012640) | 0.3608 | 0.118 | 4 |
CrFeCoNi (mp-1096923) | 0.4019 | 0.193 | 4 |
ZnSi3 (mp-971761) | 0.0000 | 0.467 | 2 |
Hg3C (mp-973450) | 0.0000 | 1.527 | 2 |
LiHg3 (mp-976599) | 0.0000 | 0.022 | 2 |
PrSm3 (mp-975797) | 0.0000 | 0.010 | 2 |
ErNp3 (mp-1006245) | 0.0000 | 0.717 | 2 |
U (mp-1008669) | 0.0000 | 0.372 | 1 |
Rh (mp-74) | 0.0000 | 0.000 | 1 |
Pb (mp-20483) | 0.0000 | 0.000 | 1 |
Mg (mp-1056702) | 0.0000 | 0.014 | 1 |
N2 (mp-1056857) | 0.0000 | 0.000 | 1 |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Sc_sv Os_pv |
Final Energy/Atom-9.9046 eV |
Corrected Energy-39.6184 eV
-39.6184 eV = -39.6184 eV (uncorrected energy)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)