material

BaCaFeF7

ID:

mvc-10626

DOI:

10.17188/1317965


Material Details

Final Magnetic Moment
20.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
FM
Formation Energy / Atom
-3.643 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.034 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
3.99 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
BaFeF5 + CaF2
Band Gap
3.947 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
P21/c [14]
Hall
-P 2yab
Point Group
2/m
Crystal System
monoclinic
We have not yet calculated a detailed bandstructure for this material
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
No elastic tensor calculated for this material, so elastic energies not avaialable. Sorting by MCIA instead.
substrate material substrate orientation film orientation MCIA [Å2]
LaAlO3 (mp-2920) <1 0 1> <0 0 1> 305.9
AlN (mp-661) <0 0 1> <0 0 1> 305.9
AlN (mp-661) <1 0 0> <0 1 0> 285.2
AlN (mp-661) <1 1 0> <1 0 0> 106.8
GaAs (mp-2534) <1 1 0> <0 0 1> 183.6
GaN (mp-804) <0 0 1> <0 0 1> 305.9
GaN (mp-804) <1 0 0> <0 0 1> 305.9
GaN (mp-804) <1 1 1> <0 0 1> 61.2
SiO2 (mp-6930) <1 1 0> <0 0 1> 183.6
DyScO3 (mp-31120) <0 0 1> <0 0 1> 61.2
DyScO3 (mp-31120) <0 1 1> <1 0 0> 106.8
DyScO3 (mp-31120) <1 0 0> <0 0 1> 183.6
DyScO3 (mp-31120) <1 1 1> <1 0 0> 213.5
ZnSe (mp-1190) <1 1 0> <0 0 1> 183.6
KTaO3 (mp-3614) <1 0 0> <1 1 0> 242.1
KTaO3 (mp-3614) <1 1 0> <0 0 1> 183.6
LaAlO3 (mp-2920) <0 0 1> <0 0 1> 305.9
AlN (mp-661) <1 0 1> <0 0 1> 122.4
CdS (mp-672) <1 1 0> <0 0 1> 305.9
LiF (mp-1138) <1 0 0> <0 1 0> 171.1
LiF (mp-1138) <1 1 0> <0 0 1> 183.6
Ag (mp-124) <1 0 0> <0 1 0> 171.1
Ag (mp-124) <1 1 0> <0 0 1> 122.4
Al (mp-134) <1 1 0> <0 0 1> 183.6
LiGaO2 (mp-5854) <0 0 1> <0 0 1> 244.7
TeO2 (mp-2125) <0 1 1> <0 0 1> 305.9
TeO2 (mp-2125) <1 0 1> <0 0 1> 305.9
BN (mp-984) <1 1 0> <0 1 0> 228.2
BN (mp-984) <1 1 1> <0 1 0> 228.2
LiTaO3 (mp-3666) <1 0 0> <0 0 1> 305.9
LiTaO3 (mp-3666) <1 0 1> <0 0 1> 305.9
LiNbO3 (mp-3731) <1 0 0> <0 0 1> 305.9
TiO2 (mp-2657) <1 0 0> <0 1 0> 342.2
TiO2 (mp-2657) <1 0 1> <0 0 1> 305.9
Al (mp-134) <1 0 0> <1 1 0> 242.1
LiGaO2 (mp-5854) <0 1 0> <0 0 1> 305.9
LiGaO2 (mp-5854) <0 1 1> <0 1 0> 171.1
GdScO3 (mp-5690) <1 0 0> <0 0 1> 183.6
GdScO3 (mp-5690) <1 1 1> <1 0 0> 213.5
Mg (mp-153) <1 1 1> <0 1 0> 342.2
SiC (mp-7631) <0 0 1> <0 1 0> 342.2
SiC (mp-7631) <1 0 0> <1 1 0> 242.1
MgO (mp-1265) <1 0 0> <0 1 0> 342.2
PbS (mp-21276) <1 1 0> <0 0 1> 305.9
Ni (mp-23) <1 1 0> <0 1 0> 171.1
C (mp-66) <1 0 0> <0 0 1> 305.9
C (mp-66) <1 1 0> <0 1 1> 250.9
BaTiO3 (mp-5986) <0 0 1> <1 1 0> 242.1
BaTiO3 (mp-5986) <1 1 1> <0 1 0> 57.0
NdGaO3 (mp-3196) <0 0 1> <0 0 1> 61.2
Up to 50 entries displayed.
minimal coincident interface area.

Elasticity

A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.

Once you have registered you can also "vote" for full calculation of this material's elastic properties.

Calculation Summary

Structure Optimization

Run Type
GGA+U
Energy Cutoff
520 eV
# of K-points
4
U Values
Fe: 5.3 eV
Pseudopotentials
VASP PAW: Ba_sv Ca_sv Fe_pv F
Final Energy/Atom
-5.6027 eV
Corrected Energy
-235.0396 eV
-235.0396 eV = -224.1076 eV (uncorrected energy) - 10.9320 eV (MP Advanced Correction)

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
Submitted by
User remarks:
  • ion_substituition

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)