Final Magnetic Moment10.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingFiM |
Formation Energy / Atom-2.938 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.000 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density3.47 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToStable |
Band Gap2.916 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinP1 [2] |
Hall-P 1 |
Point Group1 |
Crystal Systemtriclinic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <1 0 1> | <1 1 1> | 147.7 |
AlN (mp-661) | <1 0 1> | <0 1 -1> | 252.8 |
GaN (mp-804) | <1 0 1> | <0 0 1> | 265.3 |
SiO2 (mp-6930) | <1 1 0> | <1 -1 0> | 233.0 |
DyScO3 (mp-31120) | <0 0 1> | <1 0 1> | 215.2 |
DyScO3 (mp-31120) | <1 0 0> | <0 0 1> | 318.4 |
CdS (mp-672) | <1 0 1> | <0 0 1> | 265.3 |
AlN (mp-661) | <1 0 0> | <1 0 -1> | 203.6 |
AlN (mp-661) | <1 1 1> | <1 1 0> | 253.3 |
GaN (mp-804) | <1 0 0> | <1 1 -1> | 252.0 |
GaN (mp-804) | <1 1 0> | <0 0 1> | 212.3 |
SiO2 (mp-6930) | <1 0 0> | <1 1 0> | 253.3 |
Te2Mo (mp-602) | <0 0 1> | <0 0 1> | 265.3 |
Ag (mp-124) | <1 1 0> | <0 1 0> | 244.6 |
GaSe (mp-1943) | <0 0 1> | <1 0 -1> | 101.8 |
BN (mp-984) | <0 0 1> | <0 0 1> | 212.3 |
BN (mp-984) | <1 0 0> | <0 0 1> | 265.3 |
BN (mp-984) | <1 1 1> | <1 0 0> | 270.9 |
LiNbO3 (mp-3731) | <0 0 1> | <1 0 1> | 215.2 |
LiNbO3 (mp-3731) | <1 0 0> | <1 0 1> | 215.2 |
LiGaO2 (mp-5854) | <0 0 1> | <1 1 0> | 253.3 |
LiGaO2 (mp-5854) | <0 1 1> | <0 0 1> | 212.3 |
SiC (mp-7631) | <0 0 1> | <0 0 1> | 265.3 |
SiC (mp-7631) | <1 0 1> | <0 0 1> | 318.4 |
LiTaO3 (mp-3666) | <0 0 1> | <1 0 1> | 215.2 |
LiTaO3 (mp-3666) | <1 0 0> | <1 0 1> | 215.2 |
TiO2 (mp-2657) | <1 0 0> | <1 -1 0> | 233.0 |
TiO2 (mp-2657) | <0 0 1> | <0 0 1> | 265.3 |
TiO2 (mp-2657) | <1 1 1> | <1 1 1> | 147.7 |
GdScO3 (mp-5690) | <0 0 1> | <0 1 -1> | 252.8 |
Mg (mp-153) | <1 0 0> | <1 0 1> | 215.2 |
Mg (mp-153) | <1 0 1> | <0 0 1> | 265.3 |
Mg (mp-153) | <1 1 0> | <0 0 1> | 265.3 |
Mg (mp-153) | <1 1 1> | <0 0 1> | 265.3 |
LaF3 (mp-905) | <1 0 0> | <1 0 0> | 270.9 |
TbScO3 (mp-31119) | <0 0 1> | <1 0 1> | 215.2 |
Ni (mp-23) | <1 0 0> | <0 0 1> | 159.2 |
BaTiO3 (mp-5986) | <1 0 1> | <0 0 1> | 212.3 |
BaTiO3 (mp-5986) | <1 1 0> | <1 -1 1> | 120.9 |
BaTiO3 (mp-5986) | <1 0 0> | <1 0 0> | 270.9 |
BaTiO3 (mp-5986) | <1 1 1> | <0 0 1> | 318.4 |
SiC (mp-11714) | <0 0 1> | <0 0 1> | 265.3 |
SiC (mp-11714) | <1 0 0> | <0 0 1> | 212.3 |
MoSe2 (mp-1634) | <0 0 1> | <1 0 0> | 270.9 |
Ga2O3 (mp-886) | <1 1 1> | <0 0 1> | 265.3 |
Au (mp-81) | <1 1 0> | <0 1 0> | 244.6 |
C (mp-48) | <1 1 0> | <1 0 0> | 270.9 |
C (mp-48) | <1 1 1> | <0 0 1> | 265.3 |
WS2 (mp-224) | <1 0 0> | <0 0 1> | 318.4 |
C (mp-48) | <1 0 0> | <0 0 1> | 212.3 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
CaMn4(SiO3)5 (mvc-13163) | 0.0151 | 0.000 | 4 |
K4Zn(WO4)3 (mp-622489) | 0.4800 | 0.020 | 4 |
Na4Cu(MoO4)3 (mp-565983) | 0.5141 | 0.026 | 4 |
LiMn(SiO3)2 (mp-761776) | 0.5078 | 0.202 | 4 |
LiTiP2O7 (mp-758145) | 0.5148 | 0.097 | 4 |
LiFeF3 (mp-777016) | 0.5513 | 1.033 | 3 |
FeSiO3 (mp-650392) | 0.4842 | 0.821 | 3 |
MnSiO3 (mp-19528) | 0.4256 | 0.007 | 3 |
MnSiO3 (mp-565815) | 0.4195 | 0.007 | 3 |
NaPO3 (mp-1020754) | 0.5067 | 0.002 | 3 |
Na2TiFe5(Si3O10)2 (mp-566861) | 0.5700 | 0.282 | 5 |
Li3MnV(PO4)3 (mp-779367) | 0.5007 | 0.145 | 5 |
Li6MnV3(PO4)6 (mp-778914) | 0.5723 | 0.228 | 5 |
Li6MnV3(PO4)6 (mp-779387) | 0.5795 | 0.232 | 5 |
Li3MnV(PO4)3 (mp-779876) | 0.5551 | 0.219 | 5 |
Na2Gd2MgSi4(O6F)2 (mp-557538) | 0.6761 | 0.000 | 6 |
Li4CrCo2Ni3(PO4)6 (mp-776777) | 0.7085 | 0.086 | 6 |
Li4Mn2VNi3(PO4)6 (mp-770417) | 0.7084 | 0.075 | 6 |
Li4TiMn3Cr2(PO4)6 (mp-778261) | 0.6942 | 0.081 | 6 |
CaMg2TiAl2SiO10 (mp-534863) | 0.6351 | 0.026 | 6 |
Ca2Al2FeSi4BHO16 (mp-540713) | 0.6577 | 0.068 | 7 |
Na2Ca4ZrNbSi4O17F (mp-6903) | 0.7150 | 0.000 | 7 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesMn: 3.9 eV |
PseudopotentialsVASP PAW: Ca_sv Mn_pv Si O |
Final Energy/Atom-7.8481 eV |
Corrected Energy-426.9187 eV
-426.9187 eV = -392.4032 eV (uncorrected energy) - 21.0687 eV (MP Anion Correction) - 13.4468 eV (MP Advanced Correction)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)