Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingFM |
Formation Energy / Atom-2.562 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.446 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density4.58 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToCaSiO3 + CaWO4 + SiO2 + W |
Band Gap1.576 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinPbca [61] |
Hall-P 2ac 2ab |
Point Groupmmm |
Crystal Systemorthorhombic |
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
Select an element to display a spectrum averaged over all sites of that element in the structure.
Apply Gaussian smoothing:
Download spectra for every symmetrically equivalent absorption site in the structure.
Download FEFF Input parameters.
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <1 0 0> | <0 1 0> | 217.8 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 274.5 |
AlN (mp-661) | <1 0 1> | <0 0 1> | 329.4 |
AlN (mp-661) | <1 1 0> | <0 0 1> | 54.9 |
CeO2 (mp-20194) | <1 0 0> | <0 1 1> | 122.0 |
CeO2 (mp-20194) | <1 1 0> | <0 1 0> | 217.8 |
GaAs (mp-2534) | <1 1 0> | <0 0 1> | 274.5 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 274.5 |
GaN (mp-804) | <1 1 1> | <0 1 1> | 122.0 |
SiO2 (mp-6930) | <1 0 0> | <0 0 1> | 54.9 |
SiO2 (mp-6930) | <1 0 1> | <0 0 1> | 274.5 |
SiO2 (mp-6930) | <1 1 0> | <0 1 1> | 243.9 |
DyScO3 (mp-31120) | <0 0 1> | <0 1 0> | 217.8 |
DyScO3 (mp-31120) | <0 1 0> | <0 1 0> | 217.8 |
DyScO3 (mp-31120) | <0 1 1> | <0 0 1> | 54.9 |
DyScO3 (mp-31120) | <1 1 1> | <0 0 1> | 219.6 |
ZnSe (mp-1190) | <1 1 0> | <0 0 1> | 274.5 |
KTaO3 (mp-3614) | <1 1 0> | <0 0 1> | 274.5 |
YVO4 (mp-19133) | <1 0 0> | <0 0 1> | 329.4 |
YVO4 (mp-19133) | <1 1 1> | <0 0 1> | 164.7 |
Ag (mp-124) | <1 1 0> | <0 0 1> | 219.6 |
BN (mp-984) | <1 0 1> | <0 0 1> | 164.7 |
MoS2 (mp-1434) | <0 0 1> | <0 0 1> | 274.5 |
Al (mp-134) | <1 1 0> | <0 0 1> | 274.5 |
LiGaO2 (mp-5854) | <0 0 1> | <0 0 1> | 54.9 |
LiGaO2 (mp-5854) | <0 1 0> | <1 0 0> | 198.7 |
LiGaO2 (mp-5854) | <0 1 1> | <0 0 1> | 164.7 |
LiGaO2 (mp-5854) | <1 0 0> | <0 1 0> | 108.9 |
LiGaO2 (mp-5854) | <1 0 1> | <0 0 1> | 219.6 |
LiGaO2 (mp-5854) | <1 1 0> | <0 0 1> | 329.4 |
TeO2 (mp-2125) | <0 0 1> | <0 0 1> | 219.6 |
TeO2 (mp-2125) | <0 1 0> | <0 0 1> | 274.5 |
TeO2 (mp-2125) | <0 1 1> | <0 1 0> | 217.8 |
SiC (mp-7631) | <1 1 0> | <0 0 1> | 164.7 |
SiC (mp-7631) | <1 1 1> | <0 0 1> | 164.7 |
TiO2 (mp-2657) | <1 0 1> | <0 0 1> | 274.5 |
C (mp-66) | <1 0 0> | <0 0 1> | 219.6 |
GdScO3 (mp-5690) | <0 0 1> | <0 1 0> | 217.8 |
GdScO3 (mp-5690) | <0 1 0> | <0 1 0> | 217.8 |
GdScO3 (mp-5690) | <0 1 1> | <0 0 1> | 54.9 |
GdScO3 (mp-5690) | <1 1 1> | <0 0 1> | 219.6 |
Mg (mp-153) | <0 0 1> | <0 0 1> | 274.5 |
Mg (mp-153) | <1 1 1> | <0 1 1> | 122.0 |
GaP (mp-2490) | <1 0 0> | <0 1 1> | 122.0 |
GaP (mp-2490) | <1 1 0> | <0 1 0> | 217.8 |
TbScO3 (mp-31119) | <0 0 1> | <0 1 0> | 217.8 |
TbScO3 (mp-31119) | <0 1 0> | <0 1 0> | 217.8 |
TbScO3 (mp-31119) | <0 1 1> | <0 0 1> | 54.9 |
TbScO3 (mp-31119) | <1 1 1> | <0 0 1> | 219.6 |
Ni (mp-23) | <1 1 0> | <0 0 1> | 274.5 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
material | dissimilarity | Ehull | # of elements |
---|---|---|---|
ZnSiO3 (mp-619034) | 0.5196 | 0.054 | 3 |
MnSiO3 (mp-565815) | 0.5453 | 0.007 | 3 |
CdSiO3 (mp-560560) | 0.4378 | 0.000 | 3 |
MnSiO3 (mp-19528) | 0.4968 | 0.007 | 3 |
Cr6P7O24 (mp-705405) | 0.5157 | 0.021 | 3 |
ZnSi2WO6 (mvc-6892) | 0.3491 | 0.482 | 4 |
CaCo(SiO3)2 (mvc-6901) | 0.4100 | 0.161 | 4 |
CaMn(SiO3)2 (mvc-6888) | 0.4205 | 0.043 | 4 |
CaFe(SiO3)2 (mvc-6897) | 0.3859 | 0.268 | 4 |
CaSi2NiO6 (mvc-6922) | 0.3875 | 0.124 | 4 |
Mn4Si3AsHO13 (mp-744991) | 0.5774 | 0.009 | 5 |
Mn6VSi5HO19 (mp-744654) | 0.5680 | 0.004 | 5 |
Li3MnV(PO4)3 (mp-770222) | 0.5767 | 0.051 | 5 |
Li2MnV(PO4)3 (mp-770135) | 0.5817 | 0.216 | 5 |
Li2Ti4Co(AsO5)4 (mp-744463) | 0.5707 | 0.072 | 5 |
Li4Mn3CrCo2(PO4)6 (mp-763479) | 0.6921 | 0.080 | 6 |
Li4MnCr2Fe3(PO4)6 (mp-779026) | 0.6710 | 1.367 | 6 |
Li4Mn2VNi3(PO4)6 (mp-770417) | 0.6509 | 0.075 | 6 |
Li4TiMn3Cr2(PO4)6 (mp-778261) | 0.6537 | 0.081 | 6 |
Li4TiMn2Ni3(PO4)6 (mp-776756) | 0.6772 | 0.069 | 6 |
Ca2Al2FeSi4BHO16 (mp-540713) | 0.7166 | 0.068 | 7 |
Run TypeGGA+U |
Energy Cutoff520 eV |
# of K-pointsNone |
U ValuesW: 6.2 eV |
PseudopotentialsVASP PAW: Ca_sv Si W_pv O |
Final Energy/Atom-7.2554 eV |
Corrected Energy-648.9535 eV
-648.9535 eV = -580.4355 eV (uncorrected energy) - 34.8080 eV (MP Advanced Correction) - 33.7099 eV (MP Anion Correction)
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)